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Abstract. We study spin glasses on random lattices with finite connectivity. In the infinite connectivity
limit they reduce to the Sherrington Kirkpatrick model. In this paper we investigate the expansion around
the high connectivity limit. Within the replica symmetry breaking scheme at two steps, we compute the
free energy at the first order in the expansion in inverse powers of the average connectivity (z), both
for the fixed connectivity and for the fluctuating connectivity random lattices. It is well known that the
coefficient of the 1/z correction for the free energy is divergent at low temperatures if computed in the
one step approximation. We find that this annoying divergence becomes much smaller if computed in
the framework of the more accurate two steps breaking. Comparing the temperature dependance of the
coefficients of this divergence in the replica symmetric, one step and two steps replica symmetry breaking,
we conclude that this divergence is an artefact due to the use of a finite number of steps of replica symmetry
breaking. The 1/z expansion is well defined also in the zero temperature limit.

PACS. 05.50.+q Lattice theory and statistics (Ising, Potts, etc.) – 75.10.Nr Spin-glass and other
random models

1 Introduction

Many studies have been devoted to finding analytic so-
lutions of more realistic models than the Sherrington-
Kirkpatrick one. The diluted spin glass models belong
to this class, and they are characterized by a finite co-
ordination number; these models are also interesting be-
cause they are connected with different optimization prob-
lems [1].

In the present work we consider lattices where each
site is connected with a finite number of randomly chosen
sites; we study both the cases where the connectivity is
fixed and where the connectivity is a Poissonian variable
with given mean value. The spin interaction is only among
nearest neighbour pairs.

The random structure of these lattices allows us to ne-
glect the probability of closed paths of finite length: this
probability becomes indeed zero in the thermodynamic
limit: the correlations among the neighbours of a given
spin can be neglected. We are therefore dealing with mean
field models, although the difficulties due to the finite con-
nectivity don’t allow us to solve them exactly.

Whereas in the SK model only the overlap between two
replicas occurs as order parameter (the order parameter is
a function in the infinite step replica symmetry breaking
solution and a pure number when the replica symmetry
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is exact), in the finite connectivity models the order pa-
rameter becomes a function of the overlaps of any number
of replicas and then it becomes a function of an infinite
number of variables when the symmetry is totally broken;
as a result it is extremely difficult to find the exact free
energy [2–4]. In other words the probability distribution
of the effective cavity fields is Gaussian in the SK model
as a consequence of the central limit theorem, so it can be
characterized by its variance. When the number of neigh-
bours z is finite, this distribution is no more Gaussian and
all the moments are relevant and this leads to the pres-
ence of an infinite numbers of order parameters (also in
the replica symmetric situation).

Perturbative solutions have been investigated both
near the critical temperature [3] and near the infinite con-
nectivity point (SK model) [5–7]. Recently it has been
proposed proposed a general non perturbative solution de-
veloping the Bethe-Peierls cavity method to an approxi-
mation that is equivalent to a one step replica symmetry
breaking level [9].

The present work addresses to the study of the large
connectivity expansion: we compute the first order of the
expansion in the inverse power of the connectivity (z)
for the free energy. The 1/z expansion has been stud-
ied for the fixed connectivity model by Goldschmidt and
De Dominicis, at the first step of replica symmetry break-
ing [7]; they found results that exhibit a low temperature
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divergence for the first order correction in 1/z to the free
energy density. The 1/

√
z expansion, that they computed

a T = 0 and to the second step of replica symmetry break-
ing, has finite corrections both at the first and the second
order [5]. The 1/

√
z coefficient becomes yet smaller by a

factor ten and by a factor three when one goes from the
replica symmetric solution to the 1RSB one and from this
to the 2RSB one respectively.

In this paper we have computed the coefficient of
the 1/z expansion up to the second step of replica
symmetry breaking. For the replica symmetric and the
1RSB solutions our results agree with those found by
Goldschmidt and De Dominicis. These results suggest
that the pathological behaviour (i.e. the low temperature
divergence) is a consequence of the fact that one stops the
computation at a finite step of the iterative process for
breaking the replica symmetry. Our results indicate that
the 1/z expansion is well defined and can be used also
in the zero temperature limit. We notice that a well de-
fined 1/z expansion is possible for a model with continuos
varying coupling only if (irrespective of the sign) the zero
temperature entropy is zero in the limit z → ∞. Indeed it
is easy to prove using the approach of [9] that in the mean
field approximation for finite z the zero temperature en-
tropy is identically zero, so that the two limits z → ∞ and
T → 0 could not be exchanged in an hypothetical model
with continuos coupling if the zero temperature entropy
were different from zero at z = ∞.

The paper is organized as follows: in the second section
we present the two models we study and the high connec-
tivity expansion is obtained. We use a simple method to
evaluate sums over multiple replicas overlaps. In the third
section we show how to perform sums over the replica
indices in a simple way and in section four we illustrate
our numerical results for the two steps replica symmetry
breaking and we compare them with the known ones at the
first step of replica symmetry breaking. Finally we present
our conclusions. The Appendix is devoted to a consistency
check for the form of the free energy we use.

2 The large connectivity expansion

By definition a Bethe lattice is a lattice where the Bethe-
Peierls approximation is exact; this is equivalent to saying
that there are no finite size loops.

In the random lattices we study the typical length of a
loop is proportional to log N : in the infinite volume limit
it is therefore a Bethe lattice. This is locally equivalent
to a tree-like structure, nevertheless by defining the Bethe
lattice as a random lattice one bypasses the problem of
fixing the boundary conditions to introduce frustration
(this is provided by the loops of size ∼ ln N).

2.1 Random lattice with fixed connectivity

We therefore follow a variational formulation using in the
framework of the replica approach the same scheme [7,8].
We define a functional and we show that the free energy is

obtained as the stationary point with respect to an order
parameter that will be defined. The free energy functional
is [7]:

nβfn(gn) ≡ z ln (Tr{σa}g
z+1
n ({σa}))

− z + 1
2

ln

{∫ +∞

−∞
dJP (J)Tr{σa}Tr{τa}

× gz
n({σa})gz

n({τa}) exp

[
βJ

n∑
a=1

σaτa

]}
(1)

where Tr{σa} is the sum over the 2n configurations of the
variables σa with a = 1, · · · , n , z + 1 is the lattice con-
nectivity, gn({σa}) is a function of the n variables σa and
it plays the role of the order parameter. Our goal is to
make stationary the functional fn with respect to the vari-
ation of gn({σa}). We have then to find the solution of the
equation:

δf

δgn
= 0, (2)

that gives for the order parameter the equation:

gn({σa}) = C

∫ +∞

−∞
dJP (J)

∑
{τa}

exp

(
n∑

a=1

βJσaτa

)
gz

n({τa})

(3)

with

C =
Trσa∫ +∞

−∞ dJP (J)Tr{σa}Tr{τa}gz
n({σa})

× gz+1
n ({σa})

gz
n({τa}) exp [βJ

∑n
a=1 σaτa]

· (4)

We can notice that the functional defined by (1) is inde-
pendent of the gn normalization; we can then use a conve-
nient one, provided one changes the constant C (in (4)) in
Cd(1−z) when changing gn in gnd. The correctness of this
functional (1) has been proved by De Dominicis et al. [7];
a simple way to get this result is reported for completeness
in the Appendix.

In order to write the order parameter gn({σa}) in a
more explicit form (where the multiple overlaps appear)
we generalize the identity

exp (βJσaσb) = cosh (βJ)(1 + σaσb tanh (βJ)) (5)

to

exp

(
βJ

n∑
a=1

σaσb

)
= coshn (βJ)

×
n∑

r=0

(
tanhr (βJ)

∑
a1<···<ar

σa1τa1 · · ·σarτar

)
, (6)

where the last sum is over all possible sets of r replicas,
counting once any permutation.
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2.1.1 The interaction has a ±1 distribution

We first study the following distribution for the J :

P (J) =
1
2
[δ(J + J0) + δ(J − J0)] . (7)

Equation (6) is formally identical after averaging on the J ,
providing one sums only over the even r and writes J0

instead of J .
If we define the overlaps

qa1···ar =
Trσaσa1 · · ·σarg

z
n({σa})

Trσagz
n({σa}) , (8)

we can write the equation (3) as:

gn({σa}) = coshn (βJ)

×
n∑

r=0

(
tanhr (βJ)

∑
a1<···<ar

σa1 · · ·σarqa1···ar

)
· (9)

We can now implement the 1
z expansion if we scale the

couplings as usual:

J =
J̃√
z

(10)

and set J̃ = 1. Performing the expansion, after some com-
putations we obtain at the first order:

f = f0 +
1
z
f1 + O

(
1
z2

)
, (11)

with:

βf0 = −β2

4
+

β2

2n

∑
a<b

q
(0)
ab

2

− 1
n

ln

[
Tr exp

(
β
∑
a<b

q
(0)
ab σaσb

)]
(12)

and

βf1 = −β2

4
+

β4

24
− β2

2n

(
1 − 5β2

3

)∑
a<b

q
(0)
ab

2

− β4

2n

∑
a<b<c<d

q
(0)
abcd

2
+

3β4

n

∑
a<b<c

(
q
(0)
ab q

(0)
bc q(0)

ca

)

+
β4

n

∑
a<b<c<d

(
q
(0)
ab q

(0)
cd + q(0)

ac q
(0)
bd + q

(0)
ad q

(0)
bc

)
q
(0)
abcd. (13)

As it should be (we are expanding around z = +∞), f0

is the SK free energy. In these expressions we have also
expanded the overlaps in powers of 1/z:

qab = q
(0)
ab +

1
z
q
(1)
ab + · · · ,

qabcd = q
(0)
abcd +

1
z
q
(1)
abcd + · · · (14)

and we have used the identities:

q
(0)
ab =

Trσ exp [β2
∑

r<s q
(0)
rs σrσs]σaσb

Trσ exp [β2
∑

r<s q
(0)
rs σrσs]

≡ 〈σaσb〉Q

a �= b

q
(0)
abcd =

Trσ exp [β2
∑

r<s q
(0)
rs σrσs]σaσbσcσd

Trσ exp [β2
∑

r<s q
(0)
rs σrσs]

≡ 〈σaσbσcσd〉Q a �= b �= c �= d, (15)

where 〈 · 〉Q is the average on the single site Sherrington-
Kirkpatrick Hamiltonian. We notice that f is no longer
stationary with respect to the order parameter qabcd be-
cause we have already used the stationary equations to
simplify the result; however f should be stationary with
respect to qab.

2.1.2 Interaction with a Gaussian distribution

If we use a Gaussian distribution with the same mean
(J = 0) and variance (J2

0 /z) of the previously studied bi-
modal distribution, one finds that at this order the only
relevant difference is in the fourth moment of the interac-
tion (3J4

0 /z2 for the Gaussian and J4
0/z2 for the bimodal

one), (it is crucial that at this order we expand the order
parameter gn only up to the second order in z, i.e. up to
the fourth order in J). Performing the same calculations
as before, we arrive to the final form for the free energy
first order correction:

βf1 = −β2

4
+

β4

8
− β2

2n
(1 − 3β2)

∑
a<b

q
(0)
ab

2

− 3β4

2n

∑
a<b<c<d

q
(0)
abcd

2
+

3β4

n

∑
a<b<c

(
q
(0)
ab q

(0)
bc q(0)

ca

)

+
β4

n

∑
a<b<c<d

(
q
(0)
ab q

(0)
cd + q(0)

ac q
(0)
bd + q

(0)
ad q

(0)
bc

)
q
(0)
abcd. (16)

As expected, the f0 does not change because it does not
contain J4 terms and the SK model is indeed independent
from the particular distribution one uses if we fix the mean
and the variance of the couplings.

2.2 Random lattice with fluctuating connectivity

In an other interesting model the connectivity is a Poisso-
nian variable with mean value z. We take into considera-
tion the large z expansion, where the interactions proba-
bility distribution can be written in the form:

P (Jik) =
(
1 − z

N

)
δ(Jik) +

z

N
P̃ (Jik) ∀i, k, (17)

where P̃ (Jik) is a distribution to be defined.
In principle we could write an expression similar to

equation (1) for the free energy, however it is simpler to
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proceed in a direct way. The n replicas partition func-
tion is:

Zn =
∏
i<k

∫ +∞

−∞
P (Jik)dJikTrσ exp

(
βJik

∑
a

σa
i σa

k

)

=
∏
i<k

Trσ

(
1 − z

N
+

z

N

∫ +∞

−∞
˜P (Jik)

× dJik exp

(
βJik

∑
a

σa
i σa

k

))
· (18)

2.2.1 The expression of the free energy

In the case where:

P̃ (Jik) =
1
2
[δ(Jik − J0) + δ(Jik + J0)] ∀i, k (19)

we obtain:

Zn =
∏
i<k

Trσ

(
1 +

z

N
[cosh(βJ0

∑
a

σa
i σa

k) − 1]

)

= Trσ exp

{
z

N

∑
i<k

[cosh(βJ0

∑
a

σa
i σa

k) − 1]

}
· (20)

Let us rescale:

J0 → J0√
z

(21)

and write J0 = 1. We can than perform the 1/z expansion
up to the first order for the free energy:

Zn = Trσ exp


 z

N

∑
i<k


β2

2z

(∑
a

σa
i σa

k

)2
+

β4

24z2

(∑
a

σa
i σa

k

)4



= Trσ exp


 1

N

∑
i<k


β2

2


∑

a,b

σa
i σa

kσb
i σ

b
k




+
β4

24z


 ∑

a,b,c,d

σa
i σa

kσb
i σ

b
kσc

i σ
c
kσd

i σd
k






 · (22)

After converting the summations over replicas indices into
distinct indices summations (using (σa)2 = 1), introduc-
ing the Gaussian integrals and solving with the saddle
point method, we find at the first order: βf = βf0 + 1

z βf1,
where f0 is the SK free energy and f1 has the form:

βf1 = βfJ
1 ≡ β4

24
+

β4

3n

∑
a<b

q
(0)
ab

2 − β4

2n

∑
a<b<c<d

q
(0)
abcd

2
.

(23)

In a similar way, when P (J) is a Gaussian distribution,
we find the same result as before with the difference that
the first order free energy f1 is multiplied by a factor three.

If we put together the previous formulae we find that

βf1 = Afneigh
1 + KfJ

1 (24)

where A = 1 for the model with fixed number of neigh-
bours, A = 0 for the model with fluctuating number of
neighbours and K is the kurtosis of the distribution of
couplings J . The quantity fJ

1 is given by equation (23)
while fneigh

1 by the formulae (24) and (16) is found to be:

βfneigh
1 = −β2

4
− β2

2n

(
1 − β2

)∑
a<b

q
(0)
ab

2

+
3β4

n

∑
a<b<c

(
q
(0)
ab q

(0)
bc q(0)

ca

)

+
β4

n

∑
a<b<c<d

(
q
(0)
ab q

(0)
cd + q(0)

ac q
(0)
bd + q

(0)
ad q

(0)
bc

)
q
(0)
abcd. (25)

3 Evaluation of the sums over replica’s
indices

If the replica is broken at two steps (using the usual con-
ventions) we can write:

lim
n→0

1
n

∑
ab

q2
ab = (m2 − 1)q2

2 + (m1 − m2)q2
1 + m1q

2
0 ,

(26)

where the sum is on the indices a �= b. Similar expressions
can be written at higher orders in the replica symmetry
breaking and in the continuum limit one obtains:

lim
n→0

1
n

∑
ab

q2
ab =

∫ 1

0

q2(x). (27)

The formulae for the case where the replica symmetry is
broken at two steps can be obtained by using:

q(x) = q0 0 ≤ x < m1 (28)
q(x) = q1 m1 ≤ x < m2 (29)
q(x) = q2 m2 ≤ x ≤ 1. (30)

The direct computation of

lim
n→0

1
n(n − 1)(n − 2)(n − 3)

∑
abcd

q2
abcd (31)

is more involved and if it is not properly done it can be-
come a nightmare.

We can simplify it if we remark that the four replicas
overlap is a function of all the possible x’s among the four
replicas:

qabcd = q(x12, x13, x14, x23, x24, x34), (32)

with 0 ≤ xij ≤ 1 ∀i, j; however, due to the ultramet-
ric structure of the states at most three of the two repli-
cas overlaps can be distinct. Mézard and Yedidia [10] has
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24

n

�

a<b<c<d

q2
abcd = (m2 − 1)(m2 − 2)(m2 − 3)q2

42 + 3(1 − m2)
2(m1 − m2)q

2
2222sb − 3m1(1 − m2)

2q2
2222bd

− 6(1 − m2)(m2 − m1)(2m2 − m1)q
2
2221sb − 6(1 − m2)(m2 − m1)m1q

2
2221bd − 12(1 − m2)m

2
1q

2
2220

+ (m1 − m2)(m1 − 2m2)(m1 − 3m2)q
2
41 − 3(m2 − m1)

2m1q
2
2121 − 12(m2 − m1)m

2
1q

2
2120 − 6m3

1q
2
40

+ 4(m2 − 1)(m2 − 2)(m1 − m2)q
2
3211 − 4m1(m2 − 1)(m2 − 2)q2

3210 − 4m1(m1 − m2)(m1 − 2m2)q
2
3110

− 12m1(1 − m2)(m2 − m1)q
2
221110 (34)

24

n

�

a<b<c<d

qabcd(qabqcd + qacqbd + qadqbc) = 3(m2 − 1)(m2 − 2)(m2 − 3)q42q2
2 + 3(1 − m2)

2(m1 − m2)q2222sb

�
q2
2 + 2q2

1

�

−4m1(1−m2)
2q2222bd

�
q2
2 + 2q2

0

�−6(1−m2)(m2−m1)(2m2−m1)q2221sb

�
q2q1 + 2q2

1

�−6(1−m2)(m2−m1)m1q2221bd

�
q2q1 + 2q2

0

�

− 12(1 − m2)m
2
1q2220

�
q2q0 + 2q2

0

�
+ 3(m1 − m2)(m1 − 2m2)(m1 − 3m2)q41q2

1 − 3(m2 − m1)
2m1q2121

�
q2
1 + 2q2

0

�

− 12(m2 − m1)m
2
1q2120

�
q1q0 + 2q2

0

�− 18m3
1q40q2

0 + 12(m2 − 1)(m2 − 2)(m1 − m2)q3211q2q1 − 12m1(m2 − 1)(m2 − 2)q3210q2q0

− 12m1(m1 − m2)(m1 − 2m2)q3110q1q0 − 12m1(1 − m2)(m2 − m1)q221110(q2q0 + 2q1q0), (35)

Fig. 1. Four replicas diagrams. The number below the trees is
the degeneration due to the replicas indices permutations.

shown that in order to compute this kind of sums over
replicas is suitable to consider the five possible ways in
which four replicas can be organized (Fig. 1); we have
to associate a variable xi to each vertex and a factor
xs−2

i (s − 2)! when s lines converge to it. Using this rule,
providing to take into account the number of different per-
mutations of replicas indices that produce the same con-
figuration, we finally obtain:

lim
n→0

1
n(n − 1)(n − 2)(n − 3)

∑
abcd

q2
abcd = 3

∫ 0

1

dx3

∫ x3

1

dx2

∫ x3

1

dx1q(x1, x2, x3)2+12
∫ 0

1

dx3

∫ x3

1

dx2

∫ x2

1

dx1q(x1, x2, x3)2

+
∫ 0

1

dx12x2
1q(x

2
1) + 4

∫ 0

1

dx2

∫ x2

1

x1dx1q(x1, x2)2

+ 6
∫ 0

1

x2dx2

∫ x2

1

dx1q(x1, x2)2. (33)

At the second step of replica symmetry breaking we
obtain:

see equations (34, 35) above

Fig. 2. Three replicas diagrams.

where in the notation qAa··· the quantity A is the number
of replicas and a indicates the block to which they belong
(we refer to the matrix Qab at the second step of the ultra-
metric ansatz); when two possibilities can occur, we write
sb when the four replicas are in the same block of first
replica symmetry breaking and bd in the other case (i.e.
q2221sb means that two replicas belong to the same second
replica symmetry breaking block and all the four to the
same block of first replica symmetry breaking; whereas
q2221bd means that two replicas belong again to the same
second replica symmetry breaking block, the other two to
the same first replica symmetry breaking block but the
overlap between the first two and the second two is the
minimum one).

For the sum on three replicas indices we have (see
Fig. 2):

6
n

∑
a<b<c

(q(0)
ab q

(0)
bc q(0)

ca ) = (m2 − 1)(m2 − 2)q3
2

+ 3(1 − m2)(m2 − m1)q2q
2
1 + 3(1 − m2)m1q2q

2
0

+ (m1 −m2)(m1 − 2m2)q3
1 + 3m1(m2 −m1)q1q

2
0 + 2m2

1q
3
0 .

(36)

Substituting these expressions into (13, 16, 23), we obtain
the explicit expression for the free energies. We can now
find the numerical values of q2, q1, q0, m2, m1 maximiz-
ing f0 (the SK Hamiltonian is stationary with respect to
q(x)) and then we can use these values in the expressions
of the four replicas overlaps.

To obtain the expressions at one level of RSB we can
put q2 = q1 and identify the four replicas overlaps in this
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Fig. 3. The 1/z correction to the free energy as function of the temperature for the replica symmetric case (∗), one step replica
symmetry breaking and two steps replica symmetry breaking for the model with J = ±1 for fixed connectivity (left) and for
fluctuating connectivity (right).

way: q42 = q41 = q2222sb = q2221sb = q3211 ; q3210 = q3110 =
q221110 ; q2222bd = q2121 = q2221bd; q2220 = q2120 (see [7]).

4 The solution of the equation

To evaluate the value of the free energy we have firstly to
solve for the m and q parameters of the infinite connec-
tivity limit and to compute the parameters in equations
(27, 34, 35, 36). At this end we have to compute integrals
like the following:

q2222sb =
∫ +∞

−∞

dz√
2πq0

exp
(
− z2

2q0

)[
Num
Den

]

where

Num =
∫ +∞

−∞
dy exp

(
− y2

2(q1 − q0)

)

×
{∫ +∞

−∞
dx exp

(
− x2

2(q2 − q1)

)
coshm2(β(z + y + x))

}m1
m2

−2

×
{∫ +∞

−∞
dx exp

(
− x2

2(q2 − q1)

)
tanh2(β(z + y + x))

× coshm2(β(z + y + x))
}2

and

Den =
∫ +∞

−∞
dy exp

(
− y2

2(q1 − q0)

)

×
{∫ +∞

−∞
dx exp

(
− x2

2(q2 − q1)

)
coshm2(β(z + y + x))

}m1
m2

·
(37)

To evaluate these expressions it is important to opti-
mize the number of operations the computer has to do. In
the numerical evaluation of the integrals (we are consid-
ering sums instead of integrals and we set x = a i where i

is an integer) the internal integrals have in fact to be eval-
uated for every value of the variable of the external one.
A repeated evaluation would take an enormous amount of
time. A much faster method consists in evaluating before-
hand the internal functions (i.e. cosh(x + y + z)) for all
values x + y + z = a i and in storing in a table the values
in the integrals; in this way the computer has to perform
a number of evaluations of transcendental functions (e.g.
exponential) proportional to N instead to N3 of the naive
method (N is the number of spacings in which the inte-
gration domain is divided); the total number of algebraic
operations is proportional to N2.

The final results for the coefficient of the 1/z correc-
tions to the free energy are shown in Figure 3 in the case of
±1 interactions. We immediately see that the divergence
of the correction to the free energy at T = 0 fades away
when we increase the order of the replica breaking and it
is an artefact of using a starting point which is not cor-
rect (the correct one corresponds to infinite breaking of
the replica symmetry).

We evaluated the entropy doing the derivative of the
free energy (S = −df/dT ) using an high order expres-
sion for the finite difference derivative. The final results
for the coefficient of the 1/z corrections to the free en-
ergy are shown in Figure 4 in the case of ±1 interactions
with fluctuating connectivity. Also in this case we see that
the divergence of the correction to the entropy near T = 0
fades away when we increase the order of the replica break-
ing. The correction for the entropy are much stronger that
those for the free energy. In order to evidentiate the effect
of the spurious divergence at T = 0 we show also a second
order polynomial fit in the high temperature region, which
dramatically fails at low temperature.

5 Conclusions

We can see from the numerical data that the first or-
der correction f1 of the free energy in all the analyzed
models taken into account presents a divergence at small
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Fig. 4. The 1/z correction to the entropy as function of the
temperature for one step replica symmetry breaking and two
steps replica symmetry breaking for the model with J = ±1 for
fixed connectivity and the corresponding second order polyno-
mial fits in the high temperature region.

temperatures. We fit in the interval T ∈ [0.05, 0.5] a be-
haviour of the kind (see Fig. 3):

f1(T ) = D + AT 3 + BT 2 +
C

T
· (38)

We report in the following table the values of the C coef-
ficient in the different cases considered.

C values
fixed connectivity fluct. connectivity
±1 Gaussian ±1 Gaussian

RS 0.035 0.12 0.35 0.12
1RSB 0.003 0.010 0.003 0.010
2RSB 0.001 0.003 0.001 0.003

This coefficient is three times smaller when going from
the 1RSB solution to the 2RSB one. Moreover, if we look
at the results in [5] we can see that the same ratios have
been found for the 1/

√
z coefficient; its values are in fact

0.1 for RS, 0.01 for 1RSB and 0.0026 for 2RSB solutions.
The same divergent factors occur in the fixed and in the
fluctuating connectivity models and the entire divergence
comes from the term proportional the forth moment of the
distribution of the J . However, we can see from the figures
that the divergence moves to smaller temperatures when
the number of replica symmetry breaking steps increases.
In the fixed connectivity model with bimodal distribution
the divergence appears at T < 0.1.

We notice that in all these models there is a T 2 correc-
tion to the low temperature behaviour of the S.K. model,
where the free energy is proportional to T 3. From the nu-
merical data we can nevertheless argue that this correction
goes to zero in the full replica symmetry breaking solution
in the fixed connectivity model, that is linear in T 3 over
a large range of temperature already in the 2RSB solu-
tion (Fig. 5). This seems not to be the case for the other
models, where however the divergence appears at too high
temperature to allow a good estimate.

Fig. 5. The 1/z correction to the free energy as function of
T 3 for the replica symmetric case (∗), one step replica symme-
try breaking and two steps replica symmetry breaking for the
model with J = ±1 for fixed connectivity.

We fitted the curves in the temperature interval where
the divergence doesn’t yet occur, with the function:

f1(T ) = D + AT 3 + BT 2. (39)

For completeness we report in the following table the val-
ues of the coefficients A and B in the different cases con-
sidered.

B values
fixed connectivity fluct. connectivity
±1 Gaussian ±1 Gaussian

RS −0.199 −0.049 −0.437 −1.857
1RSB −0.122 −0.139 −0.370 −1.126
2RSB −0.054 −0.08 −0.299 −0.898

A values
fixed connectivity fluct. connectivity
±1 Gaussian ±1 Gaussian

RS −0.286 −0.156 0.19 0.619
1RSB −0.30 −0.176 0.165 0.497
2RSB −0.313 −0.18 0.16 0.48

The fit we have done assumes that, apart form the
1/T 2 divergence, the entropy extrapolates to zero at zero
temperature1. In order to check the consistency of the
results, we have extrapolated to zero temperature the nu-
merical results for the entropy in the temperature interval
where the divergence doesn’t appear yet. We then find
a behaviour that accords with the expected one: the zero

1 This is true for the Gaussian model, but it is not true for
the ±1 at fixed z, where spin fou are present. However it is
reasonable that this difference can be seen only at higher orders
in the 1/z expansion.
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temperature value s(0) is different from zero but decreases
when going to higher steps of replica symmetry breaking,
suggesting that it will reach the correct value s1(0) = 0 in
the infinite steps limit.

We give the results in the following table:

1st order correction to entropy at T = 0
fixed connectivity fluct. connectivity
±1 Gaussian ±1 Gaussian

1RSB 0.26 0.48 0.12 0.36
2RSB 0.18 0.32 0.07 0.22

To conclude, we think that there are numerical evi-
dences that confirm that the 1/z expansion is correct to
study the random lattices with high connectivity. The 1/z
expansion arise naturally if we compare the high connec-
tivity limit in random lattices to the case of nearest neigh-
bor interactions in the high dimension limit. The high
dimension expansion is indeed in powers of 1/D and it
coincides at the first order in D with the 1/z expansion.

Appendix

In order to demonstrate that (1) is the correct functional
for the free energy we can show that limn→0

1
n∂(βf)/∂β is

the internal energy when gn is solution of (3) and that (1)
is correctly normalized at β = 0 (−βf(β = 0) = ln 2);
the latter condition is easy to verify considering that
gn(β = 0) = 1 and that Trσa gives 2n terms. To con-
vince oneself of the validity of the former assertion one can
construct explicitly the order parameter gn({σa

0}) making
clear its physical meaning. Following the approach of [9]
we start writing the partition function in a recursive man-
ner making use of the equivalence of the model with a
Cayley tree. Focusing on an arbitrary spin σ0:

Z =
∑
{σ}

exp (βhσ0)
z+1∏
k=1

Q(L)

(
σ0|σ(k)

)
, (40)

where

Q(L)

(
σ0|σ(1)

)
= exp (βJ01σ0σ1 + βhσ1)

×
z∏

k=1

Q(L−1 )

(
σ1|σ(k)

)
. (41)

z + 1 is the branches number (random lattice’s connectiv-
ity) and L the shells number; the σ(k) are the spins on kth
branch excluding the σ0; h is an external uniform field.

We can than write the n replicas partition function:

Zn =
n∏

a=1

Za =
∑
{σ1}

· · ·
∑
{σn}

exp

(
n∑

a=1

βhσa
0

)

×
z+1∏
k=1

n∏
a=1

Q(L)

(
σa

0 |σ(k)a
)

(42)

and define:

gn,(L)({σa
0}) ≡

∑
{σ(k)a}

n∏
a=1

Q(L)

(
σa

0 |σ(k)a)
, (43)

where the bar is the average over the random couplings J .
From (42) and (43) we obtain:

Zn =
∑
{σa

0 }
exp

(
n∑

a=1

βhσa
0

)
gz+1

n,(L)({σa
0}), (44)

that reveals gn,(L)({σa
0}) to be the one branch contribution

to the partition function.
By definition it follows the recursion relation:

gn,(L)({σa
0}) =

∫ +∞

−∞
dJP (J)

×
∑
{σa

1 }
exp

(
n∑

a=1

βhσa
1 +

n∑
a=1

βJσa
0σa

1

)
gz

n,(L−1)({σa
1}).

(45)

The internal energy density can be written as a
bond energy multiplied by the number of links per spin
((z + 1)/2).

If we consider a link with a coupling constant J be-
tween two spins σ0 and σ1, we can write its energy as [9]:

E01 = −J〈σ0σ1〉 · (46)

The expectation value is computed with the Hamiltonian
H = −Jσ0σ1 + H0 + H1, where H0 is the Hamiltonian
of the spin σ0 before being connected with σ1 and can be
written as H0 = − ln (gn({σ0}))z /β; the same argument
can be repeated for σ1.

At this level we should use the finite normalized order
parameter:

gn,(L)({σa
0}) ≡∑

{σ(k)a}
∏n

a=1 Q(L)

(
σa

0 |σ(k)a)
∑

{σk
a}

∏z
l=1

∑
{σ(l)a}

∏n
a=1 Q(L−1 )

(
σa

k |σ(l)a) (47)

which follows the recursion equation:

gn,(L)({σa
0}) =∫ +∞

−∞ dJP (J)
∑

{σa
1 } exp (

∑n
a=1 βJσa

0σa
1 )gz

n,(L−1)({σa
1})∑

{σa
1 } gz

n,(L−1)({σa
1})

·
(48)

In the thermodynamic limit, taking into account only the
inner part of the Cayley tree, the gn are shells indepen-
dent, so we can write:

gn({σa}) =∫ +∞
−∞ dJP (J)

∑
{τa} exp (

∑n
a=1 βJσaτa)gz

n({τa})∑
{τa} gz

n({τa}) · (49)
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n
∂(βf)

∂β
=

z + 1

2

� +∞
−∞ dJP (J)Tr{σa}Tr{τa}g

z
n({σa})gz

n({τa}) exp [βJ
�n

a=1 σaτa](−J
�n

a=1 σaτa)
� +∞
−∞ dJP (J)Tr{σa}Tr{τa}gz

n({σa})gz
n({τa}) exp [βJ

�n
a=1 σaτa]

· (50)

Anyway the internal energy (as the free energy) is in-
sensitive to the normalization of the order parameter, so
we can use both (49) or (45) (in the last one the thermo-
dynamic limit has to be taken).

We can now evaluate the derivative of βf with re-
spect to β and appurate that we obtain the expression
we expected:

see equation (50) above
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